118. Structure-Activity Relationships of Oxygenated Morphinans. I. 4-Mono- and 3, 4-Dimethoxy-*N*-methylmorphinans and -*N*-methylmorphinan-6-ones with Unusually High Antinociceptive Potency

Preliminary Communication

by Arthur E. Jacobson, Fu-Lian Hsu, Maria D. Rozwadowska¹), Helmut Schmidhammer²), Louise Atwell and Arnold Brossi³)

Section on Medicinal Chemistry, Laboratory of Chemistry, National Institute of Arthritis, Metabolism and Digestive Diseases, National Institutes of Health, Bethesda, Maryland 20205, U.S.A.

and Fedor Medzihradsky

Departments of Biological Chemistry and Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, U.S.A.

(3.IV.81)

Summary

The antinociceptive potency and receptor affinity of several optically active aromatic mono- and di-oxygenated N-methylmorphinans and N-methylmorphinan-6-ones, prepared from natural morphine, were determined. Thus, in order of antinociceptive potency, 4-methoxy-N-methylmorphinan-6-one $\approx 3,4$ -dimethoxy-N-methylmorphinan-6-one $\approx 3,4$ -dimethoxy-N-methylmorphinan > 4-methoxy-N-methylmorphinan ≈ 4 -acetoxy-N-methylmorphinan-6-one > 4-acetoxy-N-methylmorphinan ≈ 4 -acetoxy-N-methylmorphinan-6-one ≈ 4 -hydroxy-N-methylmorphinan ≈ 4 -hydroxy ompounds were slightly less potent than morphine, and the 4-methoxy and 3,4-dimethoxy compounds were found to have three times the potency of morphine. 4-Methoxy-N-methylmorphinan-6-one showed an opiate receptor affinity one-third that of morphine; this is a remarkably high affinity for a non-phenolic compound.

Our observation that 3-deoxydihydromorphine and 3,6-dideoxydihydromorphine had considerable antinociceptive activity [1] led us to question the significance of the 4,5-epoxy O-atom. In order to discern whether a 4-oxygenated aromatic moiety would be sufficient alone, or in conjunction with other substituents, to produce morphine-like analgesia, we prepared many aromatic mono- and dioxygenated morphinans, morphinanones, and their derivatives⁴).

¹⁾ Visiting scientist from A. Mickiewicz University, 60-780 Poznań, Poland.

²) Visiting scientist from Institut für Org. und Pharm. Chemie der Universität Innsbruck, Innsbruck, Austria.

³) Author to whom correspondence should be addressed.

⁴) Details of this extensive investigation concerning oxygenated morphinans and morphinanones, and their *N*- and *O*-alkylated derivatives, will be reported elsewhere.

Considerable knowledge regarding the structure-activity relationship of aromatic oxygenated N-methylmorphinan derivatives was accumulated between 1950 and 1960 in the laboratories of *Hoffmann-La Roche* in Switzerland [2-5]. These efforts resulted already in 1949 in the discovery of (-)-3-hydroxy-N-methylmorphinan (1), introduced as a narcotic and orally effective analgesic under the generic name of levorphanol [6]. Its O-methyl ether 2 seemed to exhibit less attractive properties, although no details were given [2]. In the course of these investigations, 2- and 4-oxygenated morphinan derivatives were also prepared and are described in patent applications [7].

Our synthesis of (-)-4-hydroxy-*N*-methylmorphinan-6-one (3) from natural morphine $[8-10]^5$), and the conversion of a 3,4-catechol into its dimethyl ether 4 [11], afforded, after biological evaluation of these compounds, evidence that potent antinociceptives didn't need a phenolic hydroxy group in position 3 on the aromatic nucleus of the morphinan. We found that *O*-methylation of 3, to give the ether 5, produced a compound with an antinociceptive potency only slightly less than that of levorphanol (1) and three times the potency of morphine⁶). This suggested an extension of our investigation to a series of phenolic morphinan derivatives, 6-keto derivatives and their *O*-methyl ethers and related compounds. The results of this work shall now be summarized.

The O-methyl ether 5^7) was obtained from the phenol 3 by methylation with diazomethane or, preferably, phenyltrimethylammonium methoxide [12] [13] following standard procedures. Purification of the crude solid by chromatography

All compounds have been prepared from natural morphine, and the structures shown express their absolute configurations.

- ⁵) The latter synthesis [10] describes the preparation of (\pm) -3.
- ⁶) Some of the data on the 4-hydroxy- and 4-methoxymorphinans and -morphinan-6-ones reported here were discussed by *F.-L.H.* at the American Society of Pharmacognosy, Purdue University, West Lafayette, Indiana, in August, 1979; by *M.D.R.* at the American Chemical Society Meeting in Houston, Texas, in March, 1980; and by *A.B.* at the University of Rochester, New York, and *Stanford Research Institute* in Palo Alto, California, in 1980, and at the University of Maryland, College Park, Maryland, and the *Merck Institute* in West Point, Pennsylvania, in January, 1981.
- ⁷) All new compounds were characterized by elemental analysis and show the expected spectroscopic features.

on alumina gave a 65% yield of 5, m.p. 145–147° (benzene/petroleum ether), and $[a]_D^{26} = -96.5°$ (c = 1.02, CHCl₃) [IR.⁸) (KBr): 1700 (C=O). - ¹H-NMR.⁸) (CDCl₃): 2.41 (s, 3 H, CH₃N); 3.82 (s, 3 H, CH₃O); 4.08 (d, J = 13, H–C(5)); 6.68 (d, J = 7, 1 H, ArH); 6.72 (d, J = 7, 1 H, ArH); 7.09 ($d \times d$, J = 7, and 7, 1 H, ArH). - MS.: 285 (M^+)].

A mixture of 3, acetic anhydride and pyridine gave the 4-acetoxy compound 6 in 65% yield, m.p. 96-97° (isopropyl ether), and $[a]_D^{25} = -46.7°$ (c = 1.126, CHCl₃) [IR. (KBr): 1710 (C=O), 1765 (CH₃COO). - ¹H-NMR. (CDCl₃): 2.36 and 2.42 (2s, 3 H each, CH₃COO and CH₃N); 3.64 (d, J = 14, 1 H, H-C(5)); 6.84 (d, J = 7, 1 H, ArH); 6.99 (d, J = 7, 1 H, ArH); 7.11 ($d \times d$, J = 7, and 7, 1 H, ArH). - MS.: 313 (M^+)].

The (-)-4-hydroxy-*N*-methylmorphinan (7) was prepared in 79% yield from the phenolic ketone 3 by a *Wolff-Kishner* reduction using hydrazine hydrate in triethylene glycol, m.p. 213-214.5° (ethyl acetate), and $[a]_D^{25} = -35.4^\circ$ (c = 1.26, CH₃OH) [IR. (CHCl₃): 3600, 3350 (OH). - ¹H-NMR. (CDCl₃): 2.39 (s, 3 H, CH₃N); 3.48 (d, J = 13, 1 H, H-C(5)); 6.42 (d, J = 8, 1 H, ArH); 6.65 (d, J = 8, 1 H, ArH); 6.95 ($d \times d$, J = 8, and 8, 1 H, ArH). - MS.: 257 (M^+)⁹)]. The hydrochloride salt of 7 had m.p. 282-284° (dec., ethanol/2-propanol), and $[a]_D^{25} = -17.4^\circ$ (c = 1.00, CH₃OH).

The (-)-4-acetoxy-*N*-methylmorphinan (8) was obtained in 69% yield as its hydrochloride salt by acetylation of 7 and treatment with HCl, m.p. 227-229°, and $[\alpha]_D^{26} = +11.4$ (c = 1.28, EtOH) [IR. (8 · HCl; KBr): 1755 (C=O). - ¹H-NMR. (8; CDCl₃): 2.27 and 2.36 (2 s, 3 H each, CH₃COO and CH₃N); 6.76 (d, J = 8, 1 H, ArH); 7.10 (m, 2 H, ArH). - MS. (8; high resolution): 299.1875 (M^+) (calculated: 299.1879)].

According to the known procedure [12] [13], levorphanol (1) was methylated with phenyltrimethylammonium methoxide to give (-)-3-methoxy-N-methylmorphinan (2), m.p. 109–110° (hexane), and $[a]_D^{26} = -52.6^\circ$ (c = 0.87, EtOH) ([12]: m.p. 109–111° (EtOH/H₂O), $[a]_D^{26} = -49.3^\circ$ (c = 1.5, EtOH)).

A mixture of (-)-4, 6a- and $(-)-4, 6\beta$ -dihydroxy-*N*-methylmorphinan (9 and 10) was prepared by sodium borohydride reduction of 3 in 10% aqueous 2-propanol. The mixture 9/10 was separated by chromatography on silica gel (elution with CHCl₃/MeOH/ammonium hydroxide 80:18:2), to give 50% of the 6a epimer 9, m.p. 218-220° (acetone), and $[a]_D^{20} = -27.8°$ (c = 1.506, MeOH) [IR. (CHCl₃): 3600, 3240 (OH). - ¹H-NMR. (CD₃OD): 2.34 (s, 3 H, CH₃N); 3.81 (d, J = 14, 1 H, H-C(5)); 4.06-4.14 (m, 1 H, CHOH); 6.52 (d, J = 8, 1 H, ArH); 6.61 (d, J = 8, 1 H, ArH); 6.89 ($d \times d$, J = 8, and 8, 1 H, ArH). - MS.: 273 (M^+)]. The hydrobromide salt of 9 had m.p. 318-320° (dec., methanol/2-propanol), and $[a]_D^{20} = -10.6°$ (c = 1.13, MeOH). The chromatography also gave the 6 β -hydroxy isomer 10 in 24% yield, m.p. 132-134° (CHCl₃), and $[a]_D^{20} = -63.7°$ (c = 1.10, MeOH) [IR. (KBr): \sim^{-1} (OH). - ¹H-NMR. (CD₃OD): 2.44 (s, 3 H, CH₃N); 3.41-3.61 (m, 1 H, CHOH); 3.89

⁸) IR. spectra: \tilde{v}_{max} in cm⁻¹. ¹H-NMR. spectra: at 100 MHz or 220 MHz; internal standard tetramethylsilane (=0.0 ppm); s=singlet, d=doublet, m=multiplet, J=spin-spin coupling constant in Hz.

⁹) This material proved identical with a sample prepared by a different procedure and provided by Dr. *E. Mohacsi* from *Hoffmann-La Roche*, Nutley, New Jersey, U.S.A. [7].

(d, J = 13, 1 H, H–C(5)); 6.65 (d, J = 8, 1 H, ArH); 6.70 (d, J = 8, 1 H, ArH); 7.01 ($d \times d$, J = 8, and 8, 1 H, ArH). - MS.: 273 (M^+)]. The hydrobromide salt of **10** had m.p. 194–196° (dec., methanol/ether), and $[a]_D^{20} = -36.9°$ (c = 0.96, MeOH).

The (-)-3, 4-dimethoxy-*N*-methylmorphinan-6-one (11) was obtained in three steps from the morphine-derived 3, 4-dihydroxy-*N*-formylmorphinan-6-one⁴). The latter was reacted with methyl *p*-toluenesulfonate to form an enol ether which, after acid hydrolysis of the *N*-formyl group and enol ether, and *N*-methylation led, after the usual work-up, to the desired 6-keto compound 11, m.p. 117-118° (ether), and $[a]_D^{26} = -90^\circ$ (c = 0.63, CHCl₃) [IR. (KBr): 1710 (C=O). - ¹H-NMR. (CDCl₃): 2.36 (*s*, 3 H, CH₃N); 3.77 (*s*, 3 H, CH₃O); 3.90 (*s*, 3 H, CH₃O); 6.73 (*m*, 2 H, ArH). - MS.: 315 (M^+)].

The synthesis of (-)-3, 4-dimethoxy-*N*-methylmorphinan (4) was previously reported [11], as was the synthesis of (-)-3-methoxy-*N*-methylmorphinan-6-one¹⁰) (12) [14] [15].

 Table. Antinociceptive Activity and Receptor Binding Affinity of Selected Aromatic Oxygenated (-)-N

 Methylmorphinans and (-)-N-Methylmorphinan-6-ones

Compound	ED ₅₀ ^a)	EC ₅₀ ^b)		
		Absence of NaCl	Presence of NaCl	Presence/ absence of NaCl
4-Hydroxy-N-methylmorphinan-6-one (3) ^c)	4.4 (3.3-5.8)	54.5	120	2.2
4-Hydroxy-N-methylmorphinan (7) ^d)	4.7 (3.5-6.8)	150	513	3.4
4-Methoxy-N-methylmorphinan-6-one (5) ^c)	0.90 (0.71-1.1)	161	488	3.0
4-Methoxy-N-methylmorphinan (13) ^e)	3.1 (2.2-4.2)	510	889	1.7
4-Acetoxy- <i>N</i> -methylmorphinan-6-one (6) ^e)	3.0 (2.6-3.5)	112	645	5.8
4-Acetoxy-N-methylmorphinan (8) ^c)	5.1 (3.6-6.8)	-		
3,4-Dimethoxy-N-methylmorphinan-6-one (11) ^e)	1.1 (0.86-1.5)	-		
3,4-Dimethoxy-N-methylmorphinan (4) ^c)	0.98 (0.59-1.6)	-		
$4,6\beta$ -Dihydroxy- <i>N</i> -methylmorphinan (10) ^d)	59.8 (44.9-79.9)	-		
4,6a-Dihydroxy-N-methylmorphinan (9) ^e)	51.8 (37.3-71.7)	_		
3-Methoxy-N-methylmorphinan-6-one $(12)^{e}$ ¹⁰)	3.9 (3.2-4.9)	_		
Levorphanol (1) as tartrate	0.5 (0.2-0.7)	14	20	1.4
Levomethorphan (2) ^e)	2.8 (1.8-4.4)	-		
Morphine sulfate	2.9 (2.5-3.3)	60	142	2.4

a) Antinociceptive activity determined by hot plate assay, sc injection [16-18]. The ED₅₀, the effective dose at which half the animals are effected, values are in μmol/kg. The parenthesized numbers are 95% standard error limits determined by computerized probit analysis. The salts were introduced in aqueous solution; the bases in an *Emulphor EL620* mixture¹¹).

b) Binding affinity to rat brain homogenates. Values are in nmol¹²).

c) HCl salt. d) HBr salt. e) Base.

¹⁰) We thank Prof. H. C. Beyerman, from the Delft University of Technology in Delft, The Netherlands, for having provided us with a sample of optically active **12**.

¹¹) The Emulphor EL-620 was obtained through the courtesy of the GAF Corp., New York, N.Y. A 10% solution of a 1:1 mixture of Emulphor (polyoxyethylated vegetable oil) and absolute ethanol, in 85% physiological saline solution, was used to dissolve, or suspend, the bases for sc injection.

¹²) Aliquots of a membrane preparation from rat cerebrum were incubated with ³H-etorphine in the absence and presence of 150 mM NaCl, and in the presence of different concentrations of the drugs. Stereospecific, *i.e.*, opioid-receptor related, binding of etorphine is determined and the inhibitory potency of the drug is obtained from log-probit plots of data [19] [20].

It is noteworthy that methylation of the 3-hydroxy group in levorphanol (1) produces the less potent 2, while a similar methylation of the 4-hydroxymorphinan 7 or 4-hydroxymorphinanone 3, to give 13 or 5, caused a remarkable increase in potency. It is very unusual to find methoxylated derivatives more potent than their comparable hydroxy relatives as antinociceptives. It suggests that structural changes at position 4 in the morphinan skeleton affect the antinociceptive potency, possibly for steric and/or electronic reasons, and that they could enhance the uptake of the drug into the central nervous system. The 6-keto group does not appear to greatly influence antinociceptive potency, as can be seen by comparing 3 with 7 and 5 with 13 (Table), but the keto group aids in the binding to the opiate receptor. The examined compounds appear to interact at morphine (μ) receptor sites from the rat brain homogenate¹²). The 4-methoxy-N-methylmorphinan-6-one (5) interacts remarkably effectively with that receptor. Most aromatic ethers interact only slightly (*e.g.* morphine has *ca.* 300 times greater affinity for the receptor than codeine).

The 4-acetyl group may hydrolyze quickly *in vivo*, thus showing antinociceptive potency comparable to its 4-hydroxy relative (6 and 3 in the *Table*). The dimethoxy compounds 11 and 4, also considerably more potent then their hydroxy relatives, seem more influenced in their *in vivo* activity by the 4-methoxy than by the 3-methoxy group. Conversion of the 6-keto group to an alcohol function (9 and 10) destroys activity. The decrease in antinociceptive activity caused by a 6-hydroxy group was previously noted with dihydromorphine, which is much less potent than its deoxy congener desomorphine.

REFERENCES

- [1] J. Reden, M. F. Reich, K.C. Rice, A.E. Jacobson, A. Brossi, R.A. Streaty & W.A. Klee, J. Med. Chem. 22, 256 (1979).
- [2] J. Hellerbach, O. Schnider, H. Besendorf & B. Pellmont, in: 'Synthetic Analgesics. Part II (A) Morphinans', Pergamon Press, N.Y. 1966.
- [3] E. L. May & L.J. Sargent, in: 'Analgetics', G. deStevens ed., Acad. Press, New York 1965, pp. 123-174.
- [4] A. E. Jacobson, E. L. May & L.J. Sargent, in: 'Medicinal Chemistry', Part II. 3rd Edition, A. Burger ed., Wiley-Interscience, New York 1970, pp. 1327-1349.
- [5] N. B. Eddy, H. Besendorf & B. Pellmont, Bull. Narcotics U.N. 10, 23 (1958).
- [6] O. Schnider & A. Grüssner, Helv. Chim. Acta 32, 821 (1949).
- [7] E. Mohacsi & W. Leimgruber, U.S. Patent 3,914,234, 1975.
- [8] F.-L. Hsu, A.E. Jacobson, K.C. Rice & A. Brossi, Heterocycles 13, 259 (1979).
- [9] M.D. Rozwadowska, F.-L. Hsu, A.E. Jacobson, K.C. Rice & A. Brossi, Can. J. Chem. 58, 1855 (1980).
- [10] F.-L. Hsu, K.C. Rice & A. Brossi, Helv. Chim. Acta 63, 2042 (1980).
- [11] M. F. Rahman & A. Brossi, Heterocycles 6, 881 (1977).
- [12] O. Schnider & A. Grüssner, Helv. Chim. Acta 34, 2211 (1951).
- [13] H. Corrodi, J. Hellerbach, A. Züst, E. Hardegger & O. Schnider, Helv. Chim. Acta 42, 212 (1959).
- [14] C. Olieman, L. Maat & H. C. Beyerman, Recl. Trav. Chim. Pays-Bas 99, 169 (1980).
- [15] Y.K. Sawa, N. Tsuji & S. Maeda, Tetrahedron 15, 154 (1961).
- [16] N.B. Eddy & D. Leimbach, J. Pharmacol. Exp. Ther. 107, 385 (1953).
- [17] A. E. Jacobson & E. L. May, J. Med. Chem. 8, 563 (1965).
- [18] L. Atwell & A. E. Jacobson, Lab Animal 7, 42 (1978).
- [19] R.J. Valentino, S. Herling, J.H. Woods, F. Medzihradsky & H. Merz, J. Pharmacol. Exp. Ther., in press, 1981.
- [20] H.H. Swain, J.H. Woods, F. Medzihradsky, C.B. Smith & C.L. Fly, NIDA Research Monograph 27, 356 (1979).